MTH 605: Topology I

Homework IV

(Due 16/09)

- 1. Let $p:\widetilde{X}\to X$ is a covering map. Show that if \widetilde{X} is path-connected and X is simply-connected, then p is a homeomorphism.
- 2. Consider the universal covering space $p^2 : \mathbb{R}^2 \to S^1 \times S^1$ of the torus. Under this covering map, find a lifting of the loop $\alpha(m,n) = (e^{m\pi s}, e^{n\pi s})$ on the torus to \mathbb{R}^2 .
- 3. Show that if A is a retract of the D^2 , then every continuous map $f:A\to A$ has a fixed point.
- 4. Let $p: \widetilde{X} \to X$ be a covering space with $p^{-1}(x)$ finite for all $x \in X$. Show that \widetilde{X} is compact Hausdorff iff X is compact Hausdorff.
- 5. Show that if a path-connected, locally path-connected covering space X has a finite fundamental group, then every map $f: X \to S^1$ is nullhomotopic.
- 6. Consider the map $p \times i : \mathbb{R} \times \mathbb{R}_+ \to S^1 \times \mathbb{R}_+$, where i is the identity map of \mathbb{R}_+ and $p : \mathbb{R} \to S^1$ is the universal covering space.
 - (i) Show that $p \times i : \mathbb{R} \times \mathbb{R}_+ \to S^1 \times \mathbb{R}_+$ is a covering space.
 - (ii) Sketch the paths f(t) = (2 t, 0), $g(t) = (1 + t)\cos 2\pi t$, $(1 + t)\sin 2\pi t$, and h(t) = f * g, and also their liftings under the covering space above.
- 7. Read Lemma 55.3, Corollary 55.4, and Theorem 55.5 from Munkres.
- 8. Assume that there is no retraction $r: D^{n+1} \to S^n$. Show that every continuous map $f: D^n \to D^n$ has a fixed point. [Hint: Generalise the three results in problem 7 to S^n .